edexcel

Mark Scheme (Results)
Summer 2013

GCE Chemistry 6CH04/01R General Principles of Chemistry I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2013
Publications Code UA035568
All the material in this publication is copyright
© Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme
Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication
Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	D		1
Question Number Correct Answer Reject Mark 2 D 1			

Question Number	Correct Answer	Reject	Mark
$3(\mathrm{a})$	A		1

Question Number	Correct Answer	Reject	Mark
(b)	D		1

Question Number	Correct Answer	Reject	Mark
(c)	A		1

Question Number	Correct Answer	Reject	Mark
(d)	D		1

Question Number	Correct Answer	Reject	Mark
$4(\mathrm{a})$	B		1

Question Number	Correct Answer	Reject	Mark
(b)	C		1

Question Number	Correct Answer	Reject	Mark
(c)	C		1

Question Number	Correct Answer	Reject	Mark
(d)	B		1

Question Number	Correct Answer	Reject	Mark
$5(\mathrm{a})$	D		1

Question Number	Correct Answer	Reject	Mark
(b)	C		1

Question Number	Correct Answer	Reject	Mark
(c)	C		1

Question Number	Correct Answer	Reject	Mark
(d)	C		1

Question Number	Correct Answer	Reject	Mark
(e)	D		1

Question Number	Correct Answer	Reject	Mark
6	A		1

Question Number	Correct Answer	Reject	Mark
7	C		1

Question Number	Correct Answer	Reject	Mark
8	C		1

Question Number	Correct Answer	Reject	Mark
9	B		1

Question	Correct Answer	Reject	Mark
Number	B		1
10	B		

SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark	
*11(a)	(A green solution) forms a yellow / orange / brown (solution) ALLOW reddish-brown	(1)	Red 'Green(ish)' with any other colour	2
	A grey / black precipitate ALLOW silver ppt ALLOW solid / crystals for precipitate	(1)	Silver mirror silver compound	

Question Number	Acceptable Answers	Reject	Mark
$11(\mathrm{~b})(\mathrm{i})$	$0.05(00)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$		1

Question Number	Acceptable Answers	Reject	Mark
$11(\mathrm{~b})(\mathrm{ii})$	Amount of silver ion in $10 \mathrm{~cm}^{3}=$ amount of thiocyanate $=$	2	
$\frac{5.6 \times 0.0200}{1000}=0.000112 / 1.12 \times 10^{-4}(\mathrm{~mol})$ (1)			
	So concentration of silver ion $=$ $0.000112 \times \frac{1000}{10}=0.0112 / 1.12 \times 10^{-2}$ $\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$		

Question Number	Acceptable Answers	Reject	Mark
$11(\mathrm{~b})(\mathrm{iii})$	$0.0112 / 1.12 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Accept TE $=$ answer to (ii)		1

Question Number	Acceptable Answers	Reject	Mark
$11(\mathrm{~b})($ iv $)$	$0.0500-0.0112=0.0388 / 3.88 \times 10^{-2}$ $\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Accept TE $=0.05$ - answer to (iii) Accept answer to (i) - answer to (iii)	1	

Question Number	Acceptable Answers	Reject	Mark
11(b) (v)	$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]}{\left[\mathrm{Fe}^{2+}(\mathrm{aq})\right]\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]}$ ALLOW $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{Ag}^{+}\right]}$ $\begin{align*} & =\frac{0.0388}{0.0112^{2}} \tag{1}\\ & =309.311=309 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \tag{1} \end{align*}$ Value Unit (any order) Three SF Accept TE from (iii) and (iv): (use of 0.1 from (i) gives $708 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$) If [Ag] is included in the numerator and taken as $=\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]$, then allow unit and SF marks ONLY, but must either state 'no units' or show working	[Ag] in numerator	4

Question Number	Acceptable Answers	Reject	Mark
11(c)(i)	$\begin{aligned} & \Delta S_{\text {total }}^{\ominus}=8.31 \times \ln 309 \\ & =\quad+47.6(4) /+47.6(5) \mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \mathrm{OR} \\ & =8.31 \times \ln 309.311=+47.6(5) \mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ Accept TE : $8.31 \times \ln ($ answer from $b(v))$ Value Sign and Unit (any order) IGNORE sf except 1		2

Question Number	Acceptable Answers	Reject	Mark
11 (c)(ii)	First Mark: One of the products is a solid OR Two moles going to two moles but one of them is a solid OR	2	
Two moles of solution react to form one mole of solution / liquid and one mole of (1) solid Second Mark (Hence) RHS more ordered / LHS less ordered			

Question Number	Acceptable Answers	Reject	Mark
$11(\mathrm{c})(\mathrm{iii})$	$\Delta S_{\text {surroundings }}^{\ominus}=\Delta S_{\text {total }}^{\ominus}-\Delta S_{\text {system }}^{\ominus}$ $=+47.6-(-208.3)=(+) 255.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ Accept TE on c(i) IGNORE sf except 1		1

Question Number	Acceptable Answers	Reject	Mark
11(c)(iv)	Because ΔS^{\ominus} surroundings $=\frac{-\Delta H^{\ominus}}{\mathrm{T}}$ $\begin{align*} & \Delta H=-298 \times 255.9=-76258\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \\ & =-76.258\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ Units if given must be correct Correct answer with or without working scores 2 marks IGNORE SF except 1 As T increases $\Delta S^{\ominus}{ }_{\text {surroundings }}$ becomes less positive / decreases therefore $\Delta S_{\text {total }}$ becomes less positive / decreases ALLOW more negative for less positive	$\begin{equation*} \Delta S_{\text {total }}^{\ominus}=\frac{-\Delta H^{\ominus}}{T} \tag{1} \end{equation*}$	3

Question Number	Acceptable Answers	Reject	Mark
11^{*} (d)	No change in the titre (1) ALLOW No significant change Stand alone mark (though silver solid was removed the equilibrium constant remains the same so) the equilibrium concentration(s) would remain the same (1) Second mark dependent on first IGNORE references to temperature	2	

Total for Question 11 = 21 Marks

Question Number	Acceptable Answers	Reject	Mark
$12(\mathrm{a})(\mathrm{i})$	Aldehydes often contain (carboxylic) acid formed by oxidation (by the oxygen in air)		1

Question Number	Acceptable Answers	Reject	Mark
$12(\mathrm{a})$ (ii)	A larger volume of sodium carbonate solution is neutralized / a larger volume of carbon dioxide forms / faster reaction / more effervescence / more vigorous ALLOW reverse argument for impure aldehyde	(The old stock of) aldehyde does not react	1

Question Number	Acceptable Answers	Reject	Mark
12(a)(iii)	$\begin{align*} & \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}(\mathrm{aq}) \rightarrow \\ & 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \tag{1} \end{align*}$ Correct balanced equation Correct state symbols on correct species ALLOW $\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \\ & \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}(\mathrm{s}) \\ & \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}(\mathrm{I}) \end{aligned}$	NaCO_{3}	2

Question Number	Acceptable Answers	Reject	Mark
$12(\mathrm{a})^{*}$ (iv)	$3300-2500\left(\mathrm{~cm}^{-1}\right)$ AND O-H (stretching) (1)	COOH (group)	3
	$1725-1700\left(\mathrm{~cm}^{-1}\right)$ AND C=O (stretching) (1) ALLOW single numbers or ranges within these ranges ALLOW $1300-1250\left(\mathrm{~cm}^{-1}\right)$ AND C-O in COOH Very broad (O-H) due to hydrogen bonding (1)	COOH (group)	Hydrogen Bonding in C=O

Question Number	Acceptable Answers	Reject	Mark
12(a)(v)	First mark (stand alone) 4 peaks OR 4 hydrogen environments ALLOW 4 chemical shifts Second and Third Marks Splitting pattern: ($\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$) singlet / 1 line ($\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$) triplet / three lines ($\mathrm{CH}_{3} \mathrm{CH}_{2} \underline{C H}_{2} \mathrm{COOH}$) sextuplet / sextet / six lines ($\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$) triplet / three lines All four correct (2) any three (1) ALLOW No splits, 2 splits, five splits, 2 splits scores 2	1 split 3 splits 6 splits 3 splits	3

Question Number	Acceptable Answers	Reject	Mark
12(b)	Start pH at 2.9 ALLOW 2-4 Initial sharp rise to buffer region then vertical section at $25 \mathrm{~cm}^{3}$ ALLOW Gradual rise to vertical section at $25 \mathrm{~cm}^{3}(1)$ Vertical within pH range 6-11 and 2.5-4 units long End pH value in range 12-13	Horizontal from start deviation from vertical maximum before final pH Graph ending before $50 \mathrm{~cm}^{3}$	4

Question Number	Acceptable Answers	Reject	Mark
$12(\mathrm{c})(\mathrm{i})$	White / steamy / misty fumes ALLOW 'gas' for fumes IGNORE correct indicator test on product	White smoke Effervescence Just 'fumes' Just 'gas'	1

Question Number	Acceptable Answers		Reject	Mark
12(c)(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$ ALLOW displayed formula butanoyl chloride ALLOW Butanyl chloride	(1) (1)	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COCL}$ Butyl Chloride Buthyl Chloride	2

Question Number	Acceptable Answers	Reject	Mark
$12(\mathrm{~d})(\mathrm{i})$	Butan-1-ol OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ If 2 answers are given both must be correct	Butanol Butanal $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$	1

Question Number	Acceptable Answers	Reject	Mark
$12(\mathrm{~d})(\mathrm{ii})$	(Dry) Ethoxyethane / diethylether / Ether OR $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ If 2 answers are given they must both be correct		1

Question Number	Acceptable Answers	Reject	Mark
12(d) (iii)	The responses are in pairs: a type (1) and an associated justification (1) Reduction (of butanoic acid) By addition of hydrogen / loss of oxygen OR Oxidation of lithium tetrahydroidaluminate / aluminium hydride / LiAlH_{4} By addition of oxygen OR (Nucleophilic) addition of hydride $/ \mathrm{H}^{-}$ OR Redox Because butanoic acid has been reduced AND LiAlH_{4} has been oxidised	Any substitution Electrophilic addition	2

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $12(\mathrm{e})(\mathrm{i})$ | (Concentrated / dilute) sulfuric /
 hydrochloric acid
 ALLOW any strong acid
 ALLOW 'acid (catalyst)'
 (heat or boil under) reflux
 ALLOW Heat / warm
 Elevated temp $\leq 65^{\circ} \mathrm{C}$ | 2 | |

| Question |
| :--- | :--- | :--- | :--- |
| Number | Acceptable Answers \quad Reject \quad Mark

Question Number	Acceptable Answers	Reject	Mark
$12(\mathrm{e})(\mathrm{iii})$	Butanoyl chloride $/ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$ ALLOW Butanyl chloride OR Butanoic anhydride / $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}$	Butyl Chloride Buthyl Chloride	1
	OR Specified alkyl butanoate (not methyl butanoate) If name and structure are both given they must both be correct		

Question Number	Acceptable Answers	Reject	Mark
12(e)(iv)	Advantage marks are dependent on correct reagent (or near miss e.g. propanoyl chloride) in (iii). No TE on random answer to (iii) eg $\mathrm{H}_{2} \mathrm{SO}_{4}$ Advantages - any two from: Higher yield / goes to completion/ not an equilibrium reaction / not reversible No heat / no refluxing / less energy needed No catalyst needed / faster By-product is a gas (so easier to separate) Disadvantage (marked independently of (e)(iii)) any one of: (Acyl chloride is) more expensive / corrosive IGNORE Acyl chloride is toxic / hazardous / harmful / difficult to store OR toxic /corrosive and HCl /gas / fumes evolved IGNORE harmful/ hazardous/ dangerous OR has lower atom economy (1)	Good yield	3

Total for Question 12 = 28 Marks
Total for Section B = 49 Marks

Section C

Question Number	Acceptable Answers	Reject	Mark
13(a)(i)	$\begin{aligned} \text { Mass of bromobutane } & =0.6 \times 1.276 \\ (& =0.7656(\mathrm{~g}))\end{aligned}$ Amount of bromobutane $=\frac{0.6 \times 1.276}{137.0}$ $\begin{aligned} & =5.5883 \times 10^{-3} \\ & =5.59 \times 10^{-3} / 0.00559(\mathrm{~mol}) \end{aligned}$ OR Amount of bromobutane $=\frac{0.6 \times 1.276}{136.9}$ $\begin{aligned} & =5.5924 \times 10^{-3} \\ & =5.59 \times 10^{-3} / 0.00559(\mathrm{~mol}) \end{aligned}$ TE on incorrect mass ALLOW 6×10^{-3} (mol) Correct answer with no working scores 2 marks		2

Question Number	Acceptable Answers	Reject	Mark
13 (a)(ii)	$5.5883 \times 10^{-3} \times 24000$ $=134.12(134.22$ from 136.9$)=134 \mathrm{~cm}^{3}$ (1) ALLOW answer from (i) $\times 24000$ IGNORE SF except 1 Any two from: Formation of butan-1-ol / other / side reactions Incomplete reaction	Transfer losses Gas escapes Gas reacts with water	But-1-ene condenses
Some but-1-ene may remain in solution IGNORE (2) Reaches equilibrium / reaction reversible But-1-ene reacts with ethanol/ solvent	(

Question Number	Acceptable Answers	Reject	Mark		
13(b)(i)	So [OH^{-}] remains (effectively) constant OR [1-bromobutane] is the only variable IGNORE So $\left[\mathrm{OH}^{-}\right]$is not the limiting factor	Ensure that all $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ reacts $\left[\mathrm{OH}^{-}\right]$is in excess [OH^{-}] does not affect the rate Just `Only [1-bromobutane] affects the rate'	1		
Question Number	Acceptable Answer	Reject	Mark		
:---	:---	:---	:---	:---	:---
13 (b) (ii)					
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---		
$13(\mathrm{~b})(\mathrm{iii})$	$\left(\mathrm{V}_{\text {final }}-\mathrm{V}_{\mathrm{t}}\right)$ is proportional to the concentration of 1-bromobutane		1		
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---		
$13(\mathrm{~b})($ iv $)$	Two values $2.5 \pm 0.3(\mathrm{~min})$ (each scores one mark)	(2)	2		
Question Number	Acceptable Answers	Reject	Mark		
:---:	:---:	:---:	:---:		
13(b) (v)	Answer must be consistent with values in (iv) Because half lives are constant / similar The reaction is first order... If values in (iv) are 2.5 and 5, then: Reaction is $2^{\text {nd }}$ order because half lives are increasing scores both marks. Reaction is $1^{\text {st }}$ order because half lives are constant scores 1 mark		2		
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---		
$13(\mathrm{c})(\mathrm{i})$	Order one				
	Any one of: (Exp 1 and 2) $\left[\mathrm{OH}^{-}\right]$halves and rate halves. (Exp 1 and 3) $\left[\mathrm{OH}^{-}\right] 1 / 5$ and rate $1 / 5$ (Exp 2 and 3) $\left[\mathrm{OH}^{-}\right] 2 / 5$ and rate $2 / 5$		2		
	ALLOW reverse logic				
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---		
13 (c)(ii)	Rate $=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$ IGNORE case of K / k				
TE on $\mathrm{b}(\mathrm{v})$ and $\mathrm{c}(\mathrm{i})$				\quad	
:---					
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---		
13 (c)(iii)	$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$		1		
	ALLOW $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ any sequence of units TE on (ii)				
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---		
$13(\mathrm{c})^{*}$ (iv)		3			
	Arrows from OH-to H and from C-H bond to (1) make additional bond between carbons (1) Third arrow from bond between carbon and (1) bromine to bromine (Because) both 1-bromobutane and hydroxide ion appear in the RDS ALLOW Attack of OH- on H is slow, therefore this is the RDS (Because) both 1-bromobutane and hydroxide ion appear in the slow step IGNORE mention of rate equation	Both are involved in the reaction	Mechanism described as $S_{N} 2$		

> Total for Section C = 21 Marks
> Total for Paper = 90 Marks

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA035568 Summer 2013

Llywodraeth Cynulliad Cymru
For more information on Edexcel qualifications, please visit our website Welsh Assembly Government www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Rewarding Learning

